16t^2+64t-60=60

Simple and best practice solution for 16t^2+64t-60=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t^2+64t-60=60 equation:



16t^2+64t-60=60
We move all terms to the left:
16t^2+64t-60-(60)=0
We add all the numbers together, and all the variables
16t^2+64t-120=0
a = 16; b = 64; c = -120;
Δ = b2-4ac
Δ = 642-4·16·(-120)
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{46}}{2*16}=\frac{-64-16\sqrt{46}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{46}}{2*16}=\frac{-64+16\sqrt{46}}{32} $

See similar equations:

| y-¾=3 | | 16t^2+64t-120=0 | | y=10^4.876 | | y=10+4.876^4.876 | | 20.a=12.a+2×24 | | y=4.876^10 | | y=4.876^4.876 | | 3x-9x+60=20-3x+4x | | (7x+2)=2(8x-8) | | Q^2+19q+34=0 | | 21x-1=40x | | 6x+5=1+2(3x+2 | | 2(7+6y)+15(-1+y)=3 | | 9(4x+-5)=81 | | -4a-3a=63 | | -16=4(2+y) | | (12x+24)/2=8x-2 | | Y=-1/6x-15 | | 15b^2-23b+6=0 | | 65=-6b-1 | | -43+8x=53 | | 28=8r-20 | | 9=15+t/2 | | 2+b/6=2 | | 8x-19x=22 | | A2+3a=10 | | 10y+22=+7y | | 5/3x+12=-13 | | 17-d/5=18 | | 3b2+10b+12=4 | | 3/b=9/15 | | 46/x=2 |

Equations solver categories